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The temperature-independent component of the diaelastic effect* 
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Abstract 

Relaxation and resonance effects are well known in the internal friction and ultrasonic attenuation literature. 
In recent years a new kind of response, the diaelastic effect, has become useful in the characterization of defects 
in solids. The diaelastic effect is analogous to the diamagnetic effect for magnetic materials, and corresponds 
to the stress-induced generation of dipoles in the crystal, in contrast to the stress-induced ordering of preexisting 
dipoles, which leads to relaxation effects. The response is temperature- and frequency-independent, but does 
depend on polarization. The latter feature makes it useful in characterizing the symmetry of defects. Examples 
for different crystal types are discussed. The known diaelastic response of crystals containing interstitials has 
been used to construct a model according to which liquid and amorphous metals are crystals containing a few 
percent of self-interstitials. The phenomenological aspects of the model do not depend, however, on the microscopic 
configuration, but only on the diaelastic properties known experimentally to be universal for amorphous materials. 

1. Introduction 

The ultrasonic response of solids is generally of two 
types, relaxational and resonance. Theories for these 
effects are well developed and readily available in many 
articles, reviews and books [1-3]. We review these briefly 
and show that they do not provide for a new kind of 
frequency- and temperature-independent diaelastic re- 
sponse which has become of importance in recent years, 
but that a slight modification of existing formalism can 
serve this purpose. When applied to crystals containing 
self-interstitials, this leads to a model according to 
which liquids and glasses are crystals containing a few 
percent of interstitials. 

2. Relaxation and resonance 

In a description of mechanical effects caused by 
defects in crystal lattices, Kroner [4, 5] introduced the 
idea of para- and diaelasticity by analogy with the para- 
and diaelectric phenomena of electrostatics. Paraelas- 
ticity and relaxation are the same. The defect strain 
results from the competition between the ordering 
effects produced by an external field on an existing 
elastic dipole and the disordering effects due to thermal 
fluctuations. It requires thermal activation over an 
energy barrier and is therefore normally strongly tem- 
perature-dependent. The defect energy is linear in the 
external strain. For relaxation processes, the response 
is given in the standard Debye form in terms of two 
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parameters, the relaxation strength AR, and the relax- 
ation time ~-. For a classical system 

AR(T ) = a2c/CkT and ~(T) = z0 exp(U/kT) (1) 

where a is the coupling constant for a dipolar defect 
interaction with the sound wave, Zo is the prefactor 
and U is the barrier height for the relaxing defect of 
concentration c. The same form holds for quantum 
systems, but the temperature dependence is different. 
The relaxation height goes to zero for a low enough 
temperature, and the relaxation time is often weaker 
than exponential. Quantum effects are generally rec- 
ognized, though, by analysis of the temperature de- 
pendence of A and "r. It can happen that the relaxation 
time is Arrhenius in form, but still be quantum in 
nature; then the preexponential factor To is generally 
much smaller than a characteristic atomic period. By 
analysis of AR(T ) and z(T), the basic parameters of 
the defect system are deduced. 

Diaelasticity and resonance are also the same. It is 
the direct response corresponding to an induced elastic 
dipole to an applied force even when there is no thermal 
activation over a barrier. The defect energy is quadratic 
in the external strain. 

2.1. Dislocations 
2.1.1. Resonance 
The vibrating string model [6, 7] describes a diaelastic 

resonant response of the induced dislocation dipole 
representing the forced motion of a restrained dislo- 
cation segment under an applied shear stress. For low 
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stress amplitudes, the theory is analogous to dielectric 
theory, with dislocation displacement taking the place 
of charge displacement. 

2.1.2. Relaxation 
The Bordoni peak, in contrast, is described as a 

relaxation arising from the thermal activation of dis- 
locations over a Peierls barrier. This is described in 
detail at this conference [8, 9] and in numerous review 
articles [10, 11]. 

2.2. Dipolar point defects 
2.2.1. Classical relaxation 
The theory for classical paraelastic relaxation effects 

is reviewed in several books [1-3]. Surrounding a point 
defect in a crystal is a local field of elastic distortions. 
If the defect has a lower symmetry than that of the 
crystal, then the strain field produced by the defect 
will have a "dipolar" character. Depending on the 
symmetry class of the defect and that of the crystal, 
there will then exist a number of equivalent possible 
orientations for the dipole to assume. 

An externally applied strain can interact with the 
dipole through the strain field. For certain externally 
applied strains, some of the possible dipole orientations 
may become energetically favored over the others, and 
thermally activated transitions to the favored orien- 
tations will occur. When the externally applied strain 
is an ultrasonic wave, the reorientation process gives 
rise to an attenuation and a change in the sound 
velocity. For a crystal and a defect of given symmetry 
class, Nowick and Berry [1] have shown that, on the 
basis of symmetry arguments, certain externally applied 
strains can and others cannot induce transitions. 

22.2. Quantum effects 
The theory of attenuation and elastic constant changes 

for a quantum two-level system (TLS) in crystals is 
basically the same as that familiar for amorphous sys- 
tems, but simpler. For amorphous systems there is not 
only a distribution of strains, but also a distribution 
of tunneling gaps, extending down to zero. For TLS 
in crystals, there is a minimum gap, Ao, and for ultrasonic 
measurements with hto < A 0 there is no direct resonant 
absorption. The theory was given already by Jackle and 
coworkers [12] in 1972, and applied immediately to 
amorphous systems. The results for crystalline systems 
are derived and reviewed by Hunklinger and Arnold 
[13] and Granato et al. [14] in other ways which facilitate 
a discussion of the strain dependence. 

The elastic constant C is given by definition as 

C= i~F( e)/a~ 2 (2) 

where F is the free energy per unit volume, ( is an 
elastic strain, and C is the elastic constant belonging 

to that strain. The free energy is given by 

F-- - k T  In Z (3) 

where Z is the partition function given by 

Z = ~ e x p -  (e,/kao (4) 
i 

where El(e) are the states of the system. There are 
paraelastic and diaelastic effects resulting for dipolar 
point defects, corresponding to magnetic dipolar effects 
These can be illustrated with the simple two-level system 
shown schematically in Fig. 1. For e= 0, the dipole is 
supposed to have two equivalent orientations (A1). The 
ground state is tunnel-split with a gap of 2A. If a stress 
or strain e is applied, one orientation becomes ener- 
getically favored (A2). If time is available, transitions 
will occur, bringing the system back into thermal equi- 
librium. For the two-level system shown, however, no 
relaxation takes place for small amplitude ultrasonic 
waves about e= 0 because the energy of the states is 
fiat for small E, maintaining the equilibrium population 
of the states. 
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Fig. 1. Schematic depiction of two-level system (TLS) behavior; 
(A) Standard representation; (B) modified representation; (1) 
potential at zero strain; (2) potential for finite shear strain; (3) 
strain dependence of lower energy levels; (4) temperature de- 
pendence of diaelastic effect. 
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2.2.3. Resonance 
For T<<A, only the ground state is populated. For 

small ultrasonic stress amplitudes, the elastic constant 
is given by the curvature of the ground state, according 
to eqn. (2), and the elastic constant change is negative. 
The dipole moment is induced, proportional to the 
strain e, has a resonance-like character, and the change 
is called diaelastic. The resonance frequency is normally 
far above the megahertz range. As a result, no atten- 
uation is seen, but only the low frequency change of 
an elastic constant is found. At very high temperature, 
the two states E1 and E2 are nearly equally populated, 
the two curvatures seen in Fig. 1(A3) are opposite, 
and cancel out so that this diaelastic effect goes to 
zero (A4). The effect is a quantum effect, whose classical 
high temperature limit is zero, and which is also zero 
if the tunneling gap at zero strain, Ao= 0. 

The elastic constant change is given by the standard 
TLS formalism as 

AC a2c Ao2kT (Ao2 3V a2E2) 1/2 
- C k T  (Ao2 + a2e2) 3/2 tanh k r  (5) 

3. Experimental results for self-interstitiais 

Measurements of the change in the three independent 
elastic constants of copper as a function of Frenkel 
pair concentration produced by neutron irradiation at 
helium temperature [15] are shown in Fig. 2. The elastic 
constants decrease linearly with defect concentration. 
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Fig. 2. Elast ic constant  changes in copper  as a func t ion  o f  F renke l  
pair concentration [15]. 

For the annealing range It), where interstitials disappear, 
the changes are found to be d(ln Cij)/dc= -31,  -15  
and 0 for C44, C' =(Cll-C12)/2 and B respectively, 
where B is the bulk modulus. The change in C44 is 
very large. Changes of most properties, such as the 
volume or bulk modulus, are of unity order. The change 
of C44, if extrapolated linearly, would imply that the 
lattice becomes unstable for about 3% of interstitials. 

The change of the C44 shear modulus of iron with 
electron radiation [16] is shown in Fig. 3. For no 
radiation, the temperature dependence is that of the 
perfect lattice. With increasing defect density, the mod- 
ulus decreases, with the change being both temperature- 
and frequency-independent. The polarization depen- 
dence of the shear constant change in body-centered 
cubic (b.c.c.) iron is opposite to that of face-centered 
cubic (f.c.c.) copper. The effect is linear in the defect 
density as shown in the inset to Fig. 3. The magnitude 
and anisotropy of the shear constant changes are strong 
evidence [15, 16, 17] for the dumb-bell interstitialcy 
configuration of the interstitial, shown in Fig. 4(a) for 
the f.c.c, lattice. 

The dumb-bell displacements are aligned in (100) 
directions and are strongly coupled to atoms in the 
close-packed (110) directions, so that the configuration 
consists of a (100) dumb-beU extended with appreciable 
chains for several atoms along (110) directions. The 
stable and saddle-point configurations are reversed for 
an interstitial atom from that for a vacancy. This has 
far-reaching consequences. In particular, the intersti- 
tialcy configuration has a strong coupling to external 
shear stress, low-frequency resonance modes [18] and 
an extended linear string-like character which can lead 
to large entropy effects. It has been pointed out by 
Schober [19] that many features of low-temperature 
glass anomalies (low-frequency vibrations, relaxation 
processes and general TLS behavior) are also observed 
in crystals after irradiation at doses much less than 
those needed for amorphization. The vibrational fie- 
quency spectrum of f.c.c, crystals containing isolated 
interstitialcies has been described in detail by Dederichs 
et al. [18]. They find both low-frequency resonance 
modes and high-frequency local modes as shown in 
Fig. 4(b). The results depend a bit on the interatomic 
potential chosen. 

This effect is clearly due to an induced dipole and 
therefore is diaelastic, but the observed temperature 
independence of the effect finds no place in the existing 
formalism for diaelastic effects given by eqn. (5). This 
deficiency can be remedied simply by recognizing that 
the standard formalism takes no account of the fact 
that the defect, a self-interstitial in this case, has a 
finite formation energy EF, and also that Ev is a function 
of the shear strain EF(~), so that E=EF(E)+A(e), as 
indicated schematically in Fig. l(B2). This changes the 
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Fig. 3. Temperature dependence of C,~ in electron irradiated Fe. The elastic constant changes are proportional in the frequency 
measured in an ultrasonic interferometer. The inset gives the dependence on defect density [16]. 

energy levels to those shown in Fig. 1(B3), and now 
the high temperature classical limit is not zero (B4). 
The diaelastic contribution to the elastic constant now 
has a second component Ca, derived in the next section, 
which is temperature-independent. Both components 
Ca and the standard AC = C2-  C1 are diaelastic resonant 
effects arising from an induced dipole whose energy is 
quadratic in the strain. However, we shall refer to the 
temperature-independent component C1 as the "dia- 
elastic effect", and the standard temperature-dependent 
component as the "resonance effect". 

These two features for self-interstitials, (1) a strong 
softening of the shear modulus and (2) resonance modes, 
which lead to a large entropy for interstitials, are the 
essential ingredients of a quantitative model [20] for 
condensed matter states of simple materials. 

4. A model for condensed matter states 

It is supposed that the volume, Vo, bulk modulus, 
Bo, shear modulus, Go, and their pressure derivatives, 
B' and G', evaluated for the static lattice (no thermal 
or zero-point vibrations) are given, and the Helmholtz 
free energy F--/f(V,e), where • is the shear strain, can 
be expressed in terms of these parameters. For high 
temperatures, using a quasi-harmonic Einstein ap- 
proximation for the vibrational free energy, one then 

has the free energy of the perfect crystal, Fp, given by 
F v =F(V,E) + 3NkT ln[htoE(V)/kT]. 

For the change in free energy, 8F, of the crystal 
containing n defects, where c=n/N, one must add(l) 
the work, Fw, necessary to create a concentration, c, 
of interstitialcies, (2) the change, ~Fv, of the vibrational 
free energy resulting from the change in the frequency 
spectra, and (3) a configurational free energy, Fc, given 
by Fc = - T A S c = - T n k [ l + l n  zN/n]. The latter term 
differs from the usual small c expression for the con- 
figurational entropy only by the factor z, put in to take 
account of the fact that the interstitialcy can be oriented 
along any of z directions (z--3 f.c.c, lattices). 

It is required that Fw be given in terms of the 
independent variables and assumed that this depen- 
dence can be expressed in the form ~fw/~=aaGll  
+ a2BD, where f =  8F/N, II is the volume per atom, 
and aa and a2 are constants presumed to be the same 
for the same crystal structure. This is the principal 
assumption of the model. 

We further expect that a2/aa << 1 (and find a2/aa = 
0.03 in a fitting procedure for Cu). This means that 
the work is mainly that of a shear deformation. For 
a concentration, c, of interstitials, fw becomes 

c 

¢. = f [a, Gn + azB[l]dc 
0 

(6) 
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Fig. 4. (a) Dumb-bell  interstitialcy configuration in f.c.c, metals. 
Arrows indicate displacements for an applied shear stress and 
the E s resonance mode. (b) Calculated lattice phonon spectrum 
( - - - )  resonance, o~, and local modes, o~, for copper [18]. The 
symmetry and displacements of the central  dumb-bell  atoms are 
indicated for the resonance and local modes. For a high-tem- 
perature approximate calculation, we replace the lattice fre- 
quencies by the single Einstein frequency o~, the resonance 
modes by a single ~OR, and the local modes by a single WL, as 
indicated at the bottom of the figure. 

27rdE/b, where E=x/d. Then ~G/aE 2= - ~ G ,  where 
fl = 4~d2/b 2. As a first approximation, taking fl/f~o = 1, 
this leads to 

G=(~ (V, E) exp(-ad3c)  (8) 

for the concentration dependence of the shear modulus, 
where /3~47r 2. 

The result, eqn. (8), is basic for the model. It describes 
a large diaelastic softening of the shear modulus and 
of the free energy with defect concentration. With 
aa ~ 1, a concentration of a few percent of interstitialcies 
should greatly reduce the shear modulus, in agreement 
with the results shown in Fig. 2. 

With eqns. (8) and (6) in (7), the change in the 
Helmholtz free energy is determined. The Gibbs free 
energy, ~', is obtained from F by ~ = F + p V ,  so that 
~'(p, T, "r, c) is given as a simple analytic function. The 
change in the Gibbs free energy using parameters fitted 
to copper at zero pressure and shear stress as a function 
of concentration for different temperatures is shown 
in Fig. 5. The normalized Gibbs free energy difference 
y = 6~ fl/NGoVo[1 + (a2B/alG)],  the normalized con- 
centration x=az~c, and the normalized temperature 
t= T/Tm, where Tm is the melting temperature. 

Three distinct regimes are found by setting d(6~')/ 
dc = 0. For low enough temperatures, only one solution, 
ca(T), is obtained which gives the equilibrium inter- 
stitialcy concentration in the crystal depending expo- 
nentially on temperature with the isolated interstitialcy 
formation enthalpy as the activation energy. This is a 
very shallow minimum near the origin and is not visible 

Y t=O. 8 0.85 0.9 0.95 1£) 1.05 
0.24 
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For a high-temperature approximation, the lattice 
frequencies are replaced by a single Einstein frequency, 0.o8 
a~, the resonance modes by a single OR, and the local 
modes by a single o~ as indicated in Fig. 4(b). There 
are five resonance and six local modes for each in- 
terstitialcy. Since the resonance and local modes come o 
at the expense of the lattice modes, the change in the 
free energy per particles becomes 

f=fw-kTc[5 lnohz/oh~ +6 In oh~/o&+(1 +In z/c)] (7) -o.o8 

A self-consistency argument using the definition of the 
shear modulus G = (~F/a,2)Nf~o with eqns. (6) and (7), 
recognizing that the shear modulus in a crystal along -o.16 
planes separated by a distance d must be periodic in 
displacements b, which repeat the lattice structure yields 
the diaelastic effect. Assuming the simplest periodic 
even function, we take G = G(V, c) cos 2wx/b = G cos 

1.1 

1.15 

Fig. 5. Normalized Gibbs free energy, y, vs. normalized inter- 
stitialcy concentration, c, for different temperatures,  t, normalized 
to the melting temperature [20]. 
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on the scale of Fig. 5. For temperatures near the melting 
temperature, there are three solutions, cl, c2 and c3. 
c3(T) is interpreted as the equilibrium liquid state, with 
c2 the concentration at which 8~ has a maximum. For 
high enough temperatures, c3(T) is the only equilibrium 
stable state. Frozen-in concentrations, c3 °, represent 
amorphous states. One sees from Fig. 5 that there is 
a possible super-cooling range of about 15% below Tin- 
Melting occurs at the temperature Tm where 8~' and 
dBg'/dc =0. This gives a relation between Tm and the 
isolated interstitialcy formation enthalpy which is equiv- 
alent to Lindemann's melting criterion. The existence 
of an effective Lindemann's law gives confidence that 
fits may be achieved for a wide range of materials. 

5. Summary 

A temperature- and frequency-independent diaelastic 
effect is found in irradiated materials. This effect is 
not contained in the standard available formalism for 
ultrasonic resonance effects, but is easily taken into 
account by including a shear strain-dependent formation 
energy for the interstitial. A large softening of the 
shear elastic constant with defect concentration is de- 
rived, and used as a basis for a model of liquids and 
glasses, which are interpreted to be crystals containing 
a few percent of self-interstitials. Ultrasonic measure- 
ments provide the basic data both for the formulation 
and the use of the model. 
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